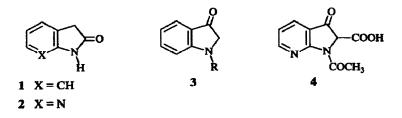


Pergamon

0040-4039(94)E0193-2

Synthesis and Reactivity of 1-Substituted-3*H*-Pyrrolo[2,3-*b*] Pyridin-3-one

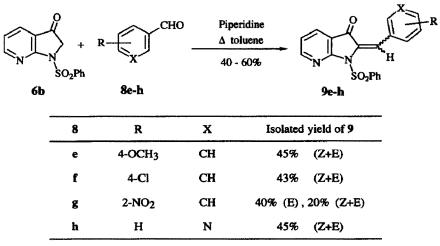

E. Desarbre and J.Y. Mérour*

Laboratoire de Chimie Bioorganique et Analytique, associé au C.N.R.S., Université d'Orléans, BP 6759, 45067 Orléans Cedex 2, France.

Abstract: 1-Substituted-pyrrolo[2,3-b]pyridin-3-ones (7-azaindolinones) have been obtained by Baeyer-Villiger oxidation. Reaction of 7-azaindolinone with aromatic aldehydes led to 2-substituted-7-azaindolinones. Synthesis of pyrido[3',2':4,5]pyrrolo[3,2-b]naphtyridine have been described.

Oxoindole derivatives, like oxindoles 1, possess various biological properties^{1,2} and indolinones $3^{3,4}$ are good intermediates for indolic compounds synthesis. The primary interest in pyrrolopyridines (azaindoles), in particular 1*H*-pyrrolo[2,3-*b*]pyridines (7-azaindoles), is their analogous framework with indole derivatives⁵. 1*H*-Pyrrolo[2,3-*b*] pyridines have been drawing much attention in biochemical and physicochemical studies like as non-invasive optical probes of protein structure^{5b}, as effective inhibitors of HIV reverse transcriptase^{5c} or as a part of the gargantuan research effort on serotoninergic neurotransmission^{5d}.

In contrast with 7-azaoxindole⁶ 2, the synthesis of 7-azaindolinones 6 has not been described. Willette has reported the preparation of (1-acetyl-3-oxo-pyrrolo[2,3-b]pyridin-2-yl) carboxylic acid 4⁷, which can be a precursor of azaindolinone 6 but, in agreement with the results of Parrick⁸, we were unable to repeat Willette's work. The standard preparations of indolinones 3^{1,9}, despite numerous attempts, met with failure when applied to the synthesis of 7-azaindolinones 6.

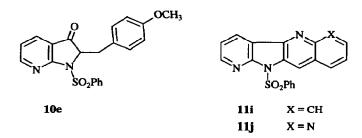

In this paper, we report the preparation of 1-substituted-3*H*-pyrrolo[2,3-*b*]pyridin-3-ones or 7azaindolinones **6a-d** by Bacyer-Villiger oxidation of 3-carboxaldehyde-1*H*-pyrolo[2,3-*b*]pyridine (3-formyl-7-azaindole) **5a-d**. As described in a recent paper¹⁰ on a new synthesis of indolinones **3**, the formyl compounds **5a-d**, obtained by reaction of hexamethylenetetramine¹¹ with the corresponding 7-azaindole, were treated with 1.3 eq meta-chloroperbenzoic acid (m-CPBA) at 0°C during 2h then at room temperature during 12h in CH_2Cl_2 to give 7-azaindolinones **6a-d** after silica gel chromatography (scheme 1).

Scheme 1

R ⁶	R ⁴ CHO		m-CPBA / CH ₂ Cl ₂ 2h 0°C and 12h r.t. 30 - 60%		$\begin{array}{c} R^{4} O \\ R^{6} N N N \\ R^{1} \end{array} + \begin{array}{c} R^{4} O \\ R^{6} N N N \\ R^{1} \end{array}$			
	5a-	d			6a-d	ł	7b	
				144-400-49-00	Iso	Isolated yield (%)		
		RI	R4	R6	5	6	7	
	a	COCH ₃	Н	Н	10	30	-	
	b	SO ₂ Ph	Н	H	10 - 15	40	15 - 10	
	c	SO ₂ Ph	Cl	H	-	60	-	
	d	SO ₂ Ph	Н	Cl	-	52	-	

As precedently described for indolinones 3^{10} , overoxidation of compound **6b** was observed to give α -hydroxyketone **7b**. This different behaviour of **5a** and **5b** towards oxidation corroborates our findings¹⁰ on the important role played by the protecting group on the 1-position. In each case, formation of pyridinium N-oxide was not observed during the oxidation step. The formyl group in 3-position was probably more reactive than the nitrogen in the pyridine ring; this selectivity has also been observed in the ellipticine series¹².

Scheme 2



Azaindolinones 6 can be substituted in 2-position through an aldol condensation sequence.

Thus, treatment of ketone **6b** with aromatic aldehydes **8e-h** in refluxing toluene with one drop of piperidine gave directly the corresponding α,β -unsaturated ketones **9e-h** as a mixture of Z and E isomers in the approximate ratio 1 / 1 (the proportion was determined by ¹H-NMR) (Scheme 2). Steric hindrance between the nitro and phenyl sulfonyl groups favoured the synthesis of compound (E) **9g** rather than of compound (Z) **9g**.

Reduction of compound 9e by hydrogen over palladium led to compound 10e in a 60% yield and gave access to 2-substituted azaindolinones which can also lead to azatryptamines substituted in the 2-position as in the indole series⁴.

The use of 2-nitrobenzaldehyde in the aldolisation reaction led to compound 9g. After hydrogenation of the nitro group over Pd/C and intramolecular cyclisation in the mixture, the 9g (E) stereomer gave the tetracyclic compound 11i in 51% yield. This two-step procedure can be reduced to a more straighforward synthesis by direct treatment of 6b with 2-amino-3-formylpyridine¹³ in toluene to give compound 11j in 55% yield. Compounds 11 are analogs of the azaellipticine series¹⁴ and we are currently investigating the synthetic potential of 7-azaindolinones 6.

Typical procedure: To a solution of 3-formyl-1-phenylsulfonyl-pyrrolo[2,3-*b*]pyridine (4 mmol) in CH₂Cl₂ (30 mL), *m*-CPBA (5.2 mmol) was added at 0°C. After 2h at 0°C, the mixture was stirred at room temperature overnight. A solution of Na₂SO₃ 10% (40mL) was added and decanted, the aqueous solution was extracted with CH₂Cl₂ (2 X 30 mL). Organic extracts were dried (MgSO₄) and evaporated *in vacuo*. The residue was chromatographed over silica gel using EP / AcOEt (7 : 3, v : v) as eluent to give **6b** (40%).

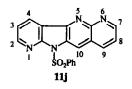
Acknowledgments: We thank Dr Faure for the ¹³C-NMR spectra data.

REFERENCES AND NOTES:

- 1. Sundberg, R.J. The Chemistry of Indoles; Academic Press: New York. 1970.
- 2. Wiseman, E.W.; Chaini, J.; Mac Manus, J.M. J. Med. Chem. 1973, 16, 131-134.
- 3. Buzas, A.; Herisson, C.; Lavielle, C. Synthesis 1972, 129-130.
- 4. Buzas, A.; Mérour, J. Y. Synthesis 1989, 458-461.
- 5. (a) Yakhontov, L.N.; Prokopov, A.A. Russ. Chem. Rev. 1980, 49, 428-444.
 - (b) Chen, Y.; Gai, F.; Petrich, J.W. J. Amer. Chem. Soc. 1993, 115, 10158-10166.
 (c) Seela, F.; Gumbioswki, R. Helv. Chim. Acta 1991, 74, 1048-1058.
 - (d) Macor, J.E.; Post, R.; Ryan, K.; J. Heterocyclic Chem. 1992, 29, 1465-1467.

- (a) Marfat, A.; Carta, M.P. Tetrahedron Lett. 1987, 28, 4027-4030.
 (b) Valentine, J.J.; Nakunishi, S.; Hageman, D.L.; Snider, R.M.; Sponcer, R.W.; Vinick, F.T. Biorg. Med. Chem. Lett. 1992, 2, 333-338.
- 7. Willette, R.E. J. Chem. Soc. 1965, 5874-5876.
- 8. Parrick, J.; Wilcox, R.; Kelly, A.H. J. Chem. Soc., Perkin Trans. 1 1980, 132-135.
- (a) Raileanu, D.; Contantinescu-Simon, O.; Mosanu, E.; Nenitzescu, C. D. Rev. Roum. Chim. 1967, 12, 105-108; Chem. Abstr. 1968, 68, 21775a.
 - (b) Hampel, W. J. Prakt. Chem. 1969, 311, 78-81.

(c) Nimtz, M.; Hefelinger, G. Liebigs Ann. Chem. 1987, 765-770.


(d) Etienne, A. Bull. Soc. Chim. Fr. 1948, 651-658.

- 10. Bourlot, A.S.; Desarbre, E.; Mérour, J.Y. Synthesis, in press.
- 11. Verbiscar, A.J. J. Med. Chem. 1972, 15, 149-152.
- 12. Plug, J.P.M.; Koonen, G.J.; Prandit, U.K. Synthesis 1992, 1221-1222.
- 13. Turner, J.A. J. Org. Chem. 1983, 48, 3401-3412.
- (a) Rivalle, C.; Ducrocq, C.; Lhoste, J.M.; Wendling, F.; Bisagni, E. *Tetrahedron* 1981, 37, 2097-2103.
 (b) Praly-Deprez, I.; Rivalle, C.; Belehradek, J.; Huel, C.; Bisagni, E. J. Chem. Soc. Perkin Trans. 1 1991, 3173-3175.
 (c) Estel, L.; Linard, F.; Marsais, F.; Godard, A.; Quéguiner, G. J. Heterocyclic Chem. 1989, 26, 105-112.
- 15. Identification of compounds 6b, 11i, and 11j.

6b: m.p: 172 - 174°C; I.R. (KBr) $v = 1720 \text{ cm}^{-1}$ (C=O); ¹H-NMR (CDCl₃, 300 MHz) δ ppm: 4.39 (s, 2H, H₂); 7,10 (dd, 1H, H₅, J = 7.3 Hz, J = 5.1 Hz); 7.50 -7.70 (m, 3H); 7.95 (dd, 1H, H₄, J = 7.3 Hz, J = 1.5 Hz); 8,15 (d, 2H, H_{arom}, J = 8.1 Hz); 8.63 (dd, 1H, H₆, J = 5.1 Hz, J = 1.5 Hz); ¹³C-NMR (DMSO-d₆, 100 MHz) 56.76 (C₂), 117.76 (C_{4a}), 119.42 (C₅), 127.89 (C₂), 129.33 (C₃), 133.58 (C₄), 134.12 (C₄), 138.23 (C₁), 155.98 (C₆), 162.99 (C_{7a}), 192.65 (C₃); M. S. (C.I., NH₃): m/z 275 (M⁺+1).

11i: m.p:.242 - 244°C; I.R. (KBr) $\upsilon = 1190 \text{ cm}^{-1}$ (SO₂); ¹H-NMR (CDCl₃, 300 MHz) δ ppm: 7.35 - 7.45 (m, 3H); 7.53 (m,1H); 7.65 (m, 1H); 7.78 (m, 1H); 8.09 (d, 1H, J = 8.1 Hz); 8.18 (m, 2H); 8.24 (d, 1H, J = 8.1 Hz); 8.66 (dd, 1H, J = 7.4 Hz, J = 1.5 Hz); 8.71 (dd, 1H, J = 5.1 Hz, J = 1.5 Hz), 9.13 (s, 1H); M.S. (C.I., NH₃): m/z 360 (M⁺+1).

11j: m.p. 257 - 259°C; I.R. (KBr) $v = 1190 \text{ cm}^{-1}$ (SO₂); ¹H-NMR (CDCl₃, 300 MHz) δ ppm: 7.40 - 7.50 (m, 3H, 2H_{arom} + H₃); 7.57 (t, 1H, H_{arom}, J = 7.4 Hz); 7.62 (dd, 1H, H₈, J = 8.1 Hz, J = 4.4 Hz); 8.20 (d, 2H, H_{arom}, J = 7.4 Hz); 8.49 (dd, 1H, H₉, J = 8.1 Hz, J = 2.2 Hz); 8.75 (d, 1H, H₂, J = 4.4 Hz); 8.78 (d, 1H, H₄, J = 8.1 Hz); 9.19 (s, 1H, H₁₀); 9.21 (dd, 1H, H₇, J = 4.4 Hz, J = 2.2 Hz); M.S. (C.I., NH₃): m/z 361 (M⁺+1).

(Received in France 14 December 1993; accepted 23 January 1994)

1998